
JOURNAL OF MAGNETIC RESONANCE 128, 114–129 (1997)
ARTICLE NO. MN971226

Quantum Treatment of Intermolecular Multiple-Quantum Coherences
with Intramolecular J Coupling in Solution NMR

Sangdoo Ahn, Warren S. Warren,1 and Sanghyuk Lee*

Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009; and
*Department of Chemistry, Ewha Womans University, Seoul 120-750, Korea

Received April 28, 1997

A recently introduced density matrix picture for dipolar effects Alternatively, it is possible to write a density matrix treat-
in solution NMR (1996, J. Chem. Phys. 105, 874) gave complete ment which explicitly shows the origin of the cross peaks
solutions for intermolecular multiple-quantum coherences for sin- in intermolecular multiple-quantum coherences (iMQCs).
gle-component samples without scalar couplings. This paper, for This ‘‘quantum picture’’ (3, 11) discards two main assump-
the first time, shows that this quantum picture can lead to explicit tions of NMR theory—the high-temperature approximation
signal expressions for multicomponent samples of molecules with

and the neglect of intermolecular dipole–dipole interactions.internal scalar couplings (here assumed to generate a first-order
The original paper (3) examines the second-order term inspectrum) and long-range dipolar couplings. Experimental obser-
the expansion of the equilibrium density matrix and showedvation of a triplet in the indirectly detected dimension for a hetero-
that iMQCs could be converted into observable signals ifnuclear CRAZED sequence (13CHCl3 sample, ZQ or 2Q coher-
some conditions were met. This quantum picture was laterences) gives clear evidence that the coupling is due to the intermo-

lecular dipolar coupling. We also make comparisons with classical greatly extended to give a complete solution, completely
pictures which introduce the dipolar demagnetization field in omitting the high-temperature approximation (11) , although
multicomponent spin systems. q 1997 Academic Press only uncoupled spins were explicitly considered.

This paper, for the first time, shows that the quantum
picture can lead to explicit signal expressions for mole-
cules with internal scalar couplings (here assumed toI. INTRODUCTION
generate a first-order spectrum) and long-range dipolar
couplings. Here the specific application is to the HETER-Nonlinear effects in solution NMR spectra have attracted
OCRAZED sequence (Fig. 1 ) first demonstrated in Ref.considerable interest recently (1–20) . These effects are
(17 ) , which detected 13C– 1H intermolecular two-spincommonly interpreted using two superficially quite different
operators ( Izi Sz j) present in the equilibrium density ma-pictures. The first explanation (2) invoked the dipolar de-
trix. The quantum picture is very intuitive for understand-magnetizing field, which was originally added to the Bloch
ing this sequence. Two-spin operators are rotated by aequations to explain multiple echoes in a continuous gradient
single 907 pulse into coherences Ixi Sx j Å ( I/i S/j /(21–27) and recently corrected (12) . The dipolar demagne-
I/i S0j / I0i S/j / I0i S0j ) / 4 which evolve at the sum oftizing field arises because of intermolecular dipole–dipole
the resonance frequencies ( about 5 /4 of the proton reso-interactions—the dipolar demagnetizing field at a certain
nance frequency, since gC É gH /4 ) or the differenceposition is the overall sum of the local fields generated by
of the resonance frequencies ( about 3 /4 of the protonall the spins in the sample. If the spin distribution around is
resonance frequency) during t1 . They are transferred byisotropic and spherically symmetric, this field is negligible;
another 907 pulse into two-spin, one-quantum coherencesif the isotropy of the spin distribution is broken (by applying
such as Iyi Sz j , which are converted by the dipolar cou-a field gradient or by a nonspherical sample) , the demagne-
pling into observable magnetization Ixi during t2 . Thetizing field becomes significant. The dynamics which are
sum-frequency term can be retained by a 4:5 gradientcalculated using modified Bloch equations that include the
echo; the difference-frequency term is retained by a 4:3dipolar demagnetizing field are inherently nonlinear in terms
gradient echo. A classical calculation for this case wouldof the magnetization, making the dynamics nonlinear and
be quite involved, since scalar couplings cannot be cor-

highly nonintuitive.
rectly treated by the Bloch equations, and is far less intu-
itive: nothing evolves during t1 at 5 /4 or 3 /4 of the proton
resonant frequency, yet the nonlinearity makes a signal1 To whom correspondence should be addressed.
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115QUANTUM TREATMENT OF iMQ COHERENCES WITH J COUPLINGS

H /\ Å ∑
N

i

(DvI Izi / DvSSzi / 2pJIziSzi)

/ ∑
N

i

∑
N

j

(3DII
ij Izi Iz j / 3DSS

ij SziSz j)

/ ∑
N

i

∑
N

j

2DIS
ij IziSz j . [1]

The first part is the contribution from the Zeeman effects
and the J coupling. The second and third parts account for
the contributions from homonuclear and heteronuclear dipo-
lar couplings, respectively, where the dipolar coupling con-
stants are defined by

FIG. 1. The heteronuclear CRAZED pulse sequence, used to observe
DIS
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;intermolecular heteronuclear multiple-quantum coherences in solution. A
907 pulse simultaneously given to both spins is followed by a free evolution
time t1 and a gradient pulse of strength G and length T . Immediately

DII
ij Å

m0

4p
g 2

I \

4
1 0 3 cos2uij

r 3
ij

. [2]afterward, a second 907 pulse is given to both spins at once, followed by
a second gradient pulse of area nGT . Detection of one spin occurs in t2 .
In real experiments, a portion of the first gradient pulse is applied at the
beginning of the t1 period to prevent radiation damping from rotating the rij is the separation between spins i and j , uij is the angle
concentrated I spin. For intermolecular 13C– 1H multiple-quantum coher-

between the internuclear vector and the main magnetic field,ences, a ratio of {3/4 selects zero-quantum terms and a ratio of {5/4
and m0 is the vacuum permeability. Note that the homonu-selects double-quantum terms.
clear part of the dipolar Hamiltonian excludes terms like
IirIj for the same reason as explained in LRVW.

The explicit expression for the equilibrium density matrix
emerge during t2 . As we show below, internal scalar cou- without the high-temperature approximation can be written
plings increase the number of pathways for generating as (11)
multiple-spin operators, but still permit analytical solu-
tion for the time evolution.

reqÅ 20 (N/M )[ ∏
i

(10JI Izi)1∏
k

(10JSSzk)] , [3]

II. THEORY
where JI Å 2 tanh(\vI /2kT ) , JS Å 2 tanh(\vS /2kT ) , and
vI and vS are the Larmor frequencies of the I and S spins,
respectively. The indices i and k run up to the number of IThe principles of a density matrix treatment for intermo-
and S spins in the sample. Applying the first (p /2)y pulses,lecular multiple-quantum coherences for a single-component
each z magnetization is rotated into x magnetization, givingsample with uncoupled spins (e.g., the double-quantum co-

herence in H2O after a double-quantum CRAZED sequence)
are described in detail in the paper by Lee, Richter, Vathyam, r( t1 Å 0) Å 20 (N/M )[ ∏

i

(1 0 JI Ixi)
and Warren (11) , which we will call LRVW in what follows.
We will extend the procedures to calculate the signal from 1 ∏

k

(1 0 JSSxk)]
the intermolecular heteronuclear multiple-quantum coher-
ences in the presence of J coupling. The pulse sequence for
the heteronuclear CRAZED experiment is shown in Fig. 1. Å 20 (N/M ) ∑

N

nÅ0

∑
M

mÅ0

(01) n/m

For simplicity in notation, we will consider the simplest case
of a 13CHCl3 sample, where 13C and H spins are J coupled.

1 J n
IJ

m
S

n

Ixi Ix jrrr

m

SxkSxlrrr . [4]
I and S denote two different kinds of spins (I Å H, S Å
13C), and we will assume that the proton signal is detected
in the detection period t2 .

The secular part of the Hamiltonian for this spin system The terms proportional to J n
IJ

m
S are (n / m)-spin operators

of the formcan be represented as
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116 AHN, WARREN, AND LEE

frequency of n times of the detection spin frequency duringn

Ixi Ix jrrr

m

Sxk Sxlrrr

, the t1 period can be transformed into an observable, if we
apply two gradient pulses in the ratio of 1:n . In the rotating
frame, when we detect the I spin at the t2 period, all multiple-

which contain the intermolecular multiple-quantum coher- quantum coherences that had frequencies {(n 0 k(gS /
ences. For example, the operator I/iS/k connects states sepa- gI))DvI / kDvS} at the t1 period could be rendered an
rated by both a proton and a carbon spin flip, and evolves at observable single-quantum term by the intermolecular dipo-
the sum of the proton and carbon frequencies. For a 13CHCl3 lar interaction. We will closely follow the procedures in
sample in a 600-MHz NMR spectrometer (gS É gI /4) , this LRVW (which handled only the single-spin case) , and ex-
term will evolve at approximately (600 / 150) MHz in the tend it to the heteronuclear case including J coupling. A
laboratory frame during the t1 period, generating terms derivation for the homonuclear case in the first-order spec-
like IyiSxk . trum approximation would be identical.

Multiple-quantum coherences in Eq. [4] can be converted During the t1 evolution time, each spin operator evolves
into the observable signal in the following way. For the under the Zeeman interaction and the J coupling, using the
heteronuclear 2Q coherence I/iS/k , the second (p /2)y pulse standard transformation rules for evolution under scalar cou-
converts this multiple-quantum coherence into the single- plings in NMR (28) :
quantum coherence of I spin (IyiSzk) . The dipolar couplings

e0 iJijIziIz jt Ixie
iJijIziIz jt Å Ixicos(Jijt /2) / 2Iyi Izjsin(Jijt /2)during the t2 period can strip off the Szk operator, giving

observable 1-spin 1Q coherence. The precession frequency e0 iJijIziIz jt2Ixi Izje
iJijIziIz jt Å 2Ixi Izjcos(Jijt /2) / Iyisin(Jijt /2)

during the t2 period will be close to 600 MHz. The gradient
e0 iJijIziIz jt Iyie

iJijIziIz jt Å Iyicos(Jijt /2) 0 2Ixi Izjsin(Jijt /2)pulses before and after the second (p /2)y pulses should be
set to 600:750Å 4:5 to select the coherence transfer pathway

e0 iJijIziIz jt2Iyi Izje
iJijIziIz jt Å 2Iyi Izjcos(Jijt /2) 0 Ixisin(Jijt /2) .

described above. In general, two gradient pulses function as
a multiple-quantum filter. A coherence evolving with the [5]

The resulting density matrix can be written as

r( t1) Å 20 (N/M )

1 ∏
i

F1 0 JI Ixicos(pJt1)cos(DvIt1 / gIGTsi ) 0 JI2IyiSzisin(pJt1)cos(DvIt1 / gIGTsi )

0JI Iyicos(pJt1)sin(DvIt1 / gIGTsi ) / JI2IxiSzisin(pJt1)sin(DvIt1 / gIGTsi ) G
1 ∏

k

F1 0 JSSxkcos(pJt1)cos(DvSt1 / gSGTsk) 0 JS2SykIzksin(pJt1)cos(DvSt1 / gSGTsk)

0 JSSykcos(pJt1)sin(DvSt1 / gSGTsk) / JS2SxkIzksin(pJt1)sin(DvSt1 / gSGTsk) G , [6]

where DvI and DvS represent the offset resonance frequencies of the I spin and S spin in the corresponding doubly rotating
frame of reference. si and sk represent the positions of the i th I spin and the k th S spin along the direction of the field
gradient applied during T with the strength of G , respectively. Note that Szi is the S spin operator J coupled to the Ii spin
and that Izk is the I spin operator J coupled to the Sk spin.

Applying the second (p /2)y pulses, we get

r( t1 , t2Å 0)Å 20 (N/M )

1∏
i

F1/JI Izicos(pJt1)cos(DvIt1/ gIGTsi )0JI2IyiSxisin(pJt1)cos(DvIt1/ gIGTsi )

0JI Iyicos(pJt1)sin(DvIt1/ gIGTsi )0JI2IziSxisin(pJt1)sin(DvIt1/ gIGTsi ) G
1∏

k

F1/JSSzkcos(pJt1)cos(DvSt1/ gSGTsk)0JS2SykIxksin(pJt1)cos(DvSt1/ gSGTsk)

0JSSykcos(pJt1)sin(DvSt1/ gSGTsk)0JS2SzkIxksin(pJt1)sin(DvSt1/ gSGTsk) G . [7]

Since there are no further RF pulses following in the sequence, the (2 / 0)-quantum operators IyiSxi and SykIxk cannot
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117QUANTUM TREATMENT OF iMQ COHERENCES WITH J COUPLINGS

give an observable signal and will be ignored for brevity. Applying the second gradient pulse of intensity G with duration
of nT ( i.e., gradient ratio Å 1:n) ,

r( t1 , t2Å nT )Å 20 (N/M )

1∏
i

1/JI Izic( t1)cos(DvIt1/ gIGTsi )

/ 1
2

JI Ixic( t1)[cos{DvIt1/ (10 n)gIGTsi }0 cos{DvIt1/ (1/ n)gIGTsi }]

0 1
2

JI Iyic( t1)[sin{DvIt1/ (10 n)gIGTsi }/ sin{DvIt1/ (1/ n)gIGTsi }]

0JI IziSyis( t1)FcosHDvIt1/ S10 n
gS

gI
DgIGTsiJ0 cosHDvIt1/ S1/ n

gS

gI
DgIGTsiJG

0JI IziSxis( t1)FsinHDvIt1/ S10 n
gS

gI
DgIGTsiJ/ sinHDvIt1/ S1/ n

gS

gI
DgIGTsiJG

1∏
k

1/JSSzkc( t1)cos(DvSt1/ gSGTsk)

/ 1
2

JSSxkc( t1)[cos{DvSt1/ (10 n)gSGTsk}0 cos{DvSt1/ (1/ n)gSGTsk}]

0 1
2

JSSykc( t1)[sin{DvSt1/ (10 n)gSGTsk}/ sin{DvSt1/ (1/ n)gSGTsk}]

0JSSzk Iyks( t1)FcosHDvSt1/ S10 n
gI

gS
DgSGTskJ0 cosHDvSt1/ S1/ n

gI

gS
DgSGTskJG

0JSSzk Ixks( t1)FsinHDvSt1/ S10 n
gI

gS
DgSGTskJ/ sinHDvSt1/ S1/ n

gI

gS
DgSGTskJG

,

[8]

where c( t1) å cos(pJt1) and s( t1) å sin(pJt1) .
Ixi Iz j

I–I dipolar coupling
Iyi;During the t2 period we must consider the scalar couplings,

the dipolar interactions, and the Zeeman interaction. The
chemical shift evolution under the Zeeman interaction does

IxiSzk

I–S dipolar coupling
Iyi . [9]

not change the order of coherences and the number of spin
operators. The J coupling and the dipolar coupling do not
change the order of coherences either, but can strip off the The J coupling can produce 1Q operators of the type IyiSzi
spin operators to produce an observable signal (1-spin 1- as well:
quantum operators) . The J coupling produces an observable
signal from the operators of the type

Ixi

J coupling
Ixic( t2) / IyiSzis( t2) . [10]

SzkIyks( t1)
J coupling

0 Ixks( t1)s( t2) . The operator Szi in Eq. [10] cannot be later stripped off by
the dipolar interactions because the Ii spin and Si spin are
in the same molecule if they are J coupled. Intramolecular
dipolar interactions are assumed here to be averaged awayThe intermolecular dipolar couplings can give an observable

signal in the following way: by the rapid rotational motion of the molecule.
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118 AHN, WARREN, AND LEE

Introducing the J coupling and keeping possible observable terms only gives

r( t1 , t2)Å 20 (N/M )

1∏
i

1/JI Izic( t1)cos(DvIt1/ gIGTsi )

/ 1
2

JI Ixic( t1)c( t2)[cos{DvIt1/ (10 n)gIGTsi }0 cos{DvIt1/ (1/ n)gIGTsi }]

0 1
2

JI Iyic( t1)c( t2)[sin{DvIt1/ (10 n)gIGTsi }/ sin{DvIt1/ (1/ n)gIGTsi }]

/ 1
2

JISxis( t1)s( t2)FcosHDvIt1/ S10 n
gS

gI
DgIGTsiJ0 cosHDvIt1/ S1/ n

gS

gI
DgIGTsiJG

0 1
2

JISyis( t1)s( t2)FsinHDvIt1/ S10 n
gS

gI
DgIGTsiJ/ sinHDvIt1/ S1/ n

gS

gI
DgIGTsiJG

/ unobservable terms

1∏
k

1/JSSzkc( t1)cos(DvSt1/ gSGTsk)

/ 1
2

JSSxkc( t1)c( t2)[cos{DvSt1/ (10 n)gSGTsk}0 cos{DvSt1/ (1/ n)gSGTsk}]

0 1
2

JSSykc( t1)c( t2)[sin{DvSt1/ (10 n)gSGTsk}/ sin{DvSt1/ (1/ n)gSGTsk}]

/ 1
2

JSIxks( t1)s( t2)FcosHDvSt1/ S10 n
gI

gS
DgSGTskJ0 cosHDvSt1/ S1/ n

gI

gS
DgSGTskJG

0 1
2

JSIyks( t1)s( t2)FsinHDvSt1/ S10 n
gI

gS
DgSGTskJ/ sinHDvSt1/ S1/ n

gI

gS
DgSGTskJG

/ unobservable terms

.[11]

In the heteronuclear case where only the I spin is detected, Eq. [11] can be effectively reduced into

r( t1 , t2)Å 20 (N/M )

1∏
i

1/JI Izic( t1)cos(DvIt1/ gIGTsi )

/ 1
2

JI Ixic( t1)c( t2)[cos{DvIt1/ (10 n)gIGTsi }0 cos{DvIt1/ (1/ n)gIGTsi }]

0 1
2

JI Iyic( t1)c( t2)[sin{DvIt1/ (10 n)gIGTsi }/ sin{DvIt1/ (1/ n)gIGTsi }]

1∏
k

1/JSSzkc( t1)cos(DvSt1/ gSGTsk)

/ 1
2

JSIxks( t1)s( t2)FcosHDvSt1/ S10 n
gI

gS
DgSGTskJ0 cosHDvSt1/ S1/ n

gI

gS
DgSGTskJG

0 1
2

JSIyks( t1)s( t2)FsinHDvSt1/ S10 n
gI

gS
DgSGTskJ/ sinHDvSt1/ S1/ n

gI

gS
DgSGTskJG

.[12]
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119QUANTUM TREATMENT OF iMQ COHERENCES WITH J COUPLINGS

The terms multiplied by s( t1)s( t2) come from the coher-
ence transfer from the S spin to I spin as in a hetero-COSY
sequence, i.e.,

Sz

(p /2)
y

Sx

J coupling Zeeman

1
2

Ixic( t1)c( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr

1 {c( t1)} p/q[cos{DvIt10 (n0 1)gIGTsi }

0 cos{DvIt1/ (n/ 1)gIGTsi }]

0 2SxIzs( t1)
(p /2)

y

2SzIys( t1) 1
p

[cos(DvIt1/ gIGTsj1)cos(DvIt1/ gIGTsj2)rrr]
J coupling Zeeman

Ixs( t1)s( t2) . [13]
1

q

[cos(DvSt1/ gSGTsl1)cos(DvSt1/ gSGTsl2)rrr]
.

These terms cannot give any observable by themselves
[14](without dipolar couplings) after spatial averaging except

when n Å {gS /gI . With intermolecular dipolar couplings,
Note that we change the indicesthe situation is different: 1Q operators of the form

p

Izj Izkrrr

q

SzlSzmrrr

r
p

Izj1Izj2rrr

q

Szl1Szl2rrrIxi

p

Izj Izkrrr

q

SzlSzmrrr

,

to avoid confusion. The product of cosine functions must beafter (p / q) commutations with the dipolar Hamiltonian,
converted into a sum of cosines to evaluate the effect of thecan produce an observable signal.
spatial modulation. TheExpansion of Eq. [12] produces this type of operator

in two distinct ways. The terms multiplied by
JIJ

p
IJ

q
Sc( t1)c( t2) involve no coherence transfer between S p

cos(DvIt1 / gIGTsj1)cos(DvIt1 / gIGTsj2)rrrand I spins due to J coupling, and are analogous to the terms
retained in the coupling-free calculation. The others have a
factor of JSJ

p
IJ

q
Ss( t1)s( t2) , and these terms appear due to factor will lead to terms of the type cos{mDvIt1 /

the coherence transfer from S spins to I spins as explained gIGTsj(m)}. This term evolves at a frequency of mDvI
earlier. We will denote each contribution as rD and rJ . The during the t1 period, and represents m-quantum coherence
spatial modulations of these two types are different, and we in the I spin. For compactness, we define sj(m) as one of
will treat each case separately. the combinations of terms with the difference between posi-

tive and negative signs of sj being m ; for example, sj(1) forA. Terms without Coherence Transfer Due to J Coupling
the p Å 3 case can be one of (sj1 / sj2 0 sj3) , (sj1 0 sj2 /
sj3) , and (0sj1 / sj2 / sj3) . Then the first part of Eq. [14]The terms with JIJ

p
I J

q
S ( Ixi component ) can be written

as would have terms like

cos{DvIt1 / (1 0 n)gIGTsi } 1

p

cos(DvIt1 / gIGTsj1)rrr

q

cos(DvSt1 / gSGTsl1)rrr

c cos{DvIt1 / (1 0 n)gIGTsi }cos{mDvIt1 / gIGTsj(m)}cos{kDvSt1 / gSGTsl(k)}

Å 1
4

cos{(m / 1)DvIt1 / kDvSt1 / (1 0 n)gIGTsi / gIGTsj(m) / gSGTsl(k)}

/cos{(m / 1)DvIt1 0 kDvSt1 / (1 0 n)gIGTsi / gIGTsj(m) 0 gSGTsl(k)}

/cos{(m 0 1)DvIt1 0 kDvSt1 0 (1 0 n)gIGTsi / gIGTsj(m) 0 gSGTsl(k)}

/cos{(m 0 1)DvIt1 / kDvSt1 0 (1 0 n)gIGTsi / gIGTsj(m) / gSGTsl(k)}

Å (A / B / C / D) /4. [15]
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120 AHN, WARREN, AND LEE

The coherence transfer pathway that passes the gradient filter which leads to
is selected by adjusting n . The terms that survive after spatial
averaging due to the gradient pulses should not depend on the 1

2
Ixic( t1)c( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr {c( t1)} p/qabsolute position of the spins (11). For the A term in Eq. [15],
a nonvanishing signal is obtained when gI(1 0 n / m) / gSk
Å 0, i.e., m / 1 Å n 0 (gS/gI)k. Similarly the B , C , and D

1 1
2 p/q/2 ∑

p

mÅ0p

pC (p0ÉmÉ) /2 ∑
q

kÅ0q

qC (q0ÉkÉ) /2terms do not vanish when m / 1 Å n / (gS/gI)k , m 0 1 Å
0n / (gS /gI)k , and m 0 1 Å 0n 0 (gS /gI)k . The resulting
spatial part becomes cos{gIGT(sj1 0 si )}rrrcos{gSGT(sl1 0
si )}rrr, which depends only on the relative position of the

1

cos{(n 0 k *)DvIt1 / kDvSt1}dm/1,n0k =

/ cos{(n / k *)DvIt1 0 kDvSt1}dm/1,n/k =

/cos{(n 0 k *)DvIt1 / kDvSt1}dm01,0n/k =

/ cos{(n / k *)DvIt1 0 kDvSt1}dm01,0n0k =

spins (11). Then we can rewrite Eq. [15] as

1 cos{gIGT(sj1 0 si )}rrrcos{gSGT(sl1 0 si )}rrr1
4

cos{(n 0 k *)DvIt1 / kDvSt1}dm/1,n0k =

/ cos{(n / k *)DvIt1 0 kDvSt1}dm/1,n/k =

/cos{(n 0 k *)DvIt1 / kDvSt1}dm01,0n/k =

/ cos{(n / k *)DvIt1 0 kDvSt1}dm01,0n0k =

Å A * / B * / C * / D *. [18]

The first and third terms in the brackets of Eq. [18], which1 cos{gIGT(sj1 0 si )}rrrcos{gSGT(sl1 0 si )}rrr,
we label A* and C *, are the same, and so are B * and D *. A *

[16] and B * differ only in the sign of k , as do B * and D *. There-
fore we can choose A* as a representative term, and we

where k* Å (gS /gI)k . obtain
This can be simplified by considering the relation (29)

1
2

Ixic( t1)c( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr {c( t1)} p/q
cos nu Å 1

2 n ∑
n

mÅ0n

nC (n0ÉmÉ) /2cos(mu) , [17]

where nChalf integer å 0 and nCk å n! /k!(n 0 k)!. Then the 1 1
2 p/q/2 ∑

q

kÅ0q

qC (q0ÉkÉ) /2pC (p0Én0k =01É) /2

first part of Eq. [14] can be written as

1 cos{(n0 k *)DvIt1/ kDvSt1}
1
2

Ixic( t1)c( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr {c( t1)} p/q
1 cos{gIGT(sj10 si )}rrrcos{gSGT(sl10 si )}rrr.

[19]
1 1

2 p/q cos{DvIt1 / (1 0 n)gIGTsi }
The second part of Eq. [14] can be obtained by changing

the sign of n . Again all four terms as in Eq. [18] are equiva-
1 ∑

p

mÅ0p

pC (p0ÉmÉ) /2cos{mDvIt1 / sj(m)gIGT} lent, and D gives the same expression as in Eq. [19]. The
multiplying factor becomes pC (p0ÉmÉ) /2Å pC (p0Én0k =/1É) /2 . The
Iyi component from Eq. [12] is obtained analogously. Col-1 ∑

q

kÅ0q

qC (q0ÉkÉ) /2cos{kDvSt1 / sl(k)gSGT},
lecting all pieces together, we get

r p/q
D Å J p/1

I J q
S2
0 (N/M ){c( t1)} p/q/1c( t2)

1
2 p/q/1

1
p!q!

1 qC (q0ÉkÉ) /2 (pC{p0Én0k =01É}/2 0 pC{p0Én0k =/1É}/2 )

1 ∑
ix

∑
j1x

rrr ∑
xl1x

rrr

Ixi

p

Izj1Izj2rrr

q

Szl1Szl2rrr cosHSn 0 k
gS

gI
DDvIt1 / kDvSt1J

0Iyi

p

Izj1Izj2rrr

q

Szl1Szl2rrr sinHSn 0 k
gS

gI
DDvIt1 / kDvSt1J

1[cos{gIGT(sj1 0 si )}rrrcos{gSGT(sl1 0 si )}rrr]

. [20]
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Note that 1/p!q! is necessary to convert the ordered sum Summing up all observable terms, we get
( j1 õ j2 õ j3 õ rrr) into the orderless sum ( j1 x j2 x
j3 x rrr) [cf. Eq. [28] in Ref. (11)] . The coefficient term rD( t1 , t2)
can be written as

Å 20 (N/M/1)JIc( t1)c( t2) ∑
N

iÅ1

∑
q

kÅ0q

(01) (n02/k0k = ) /2

1 [Ixisin{(n 0 k *)DvIt1 / kDvSt1}

/ Iyicos{(n 0 k *)DvIt1 / kDvSt1}]

1 (L II
i )01(n 0 k *)

1 ∑
(N0n/k = ) /2

p =Å0

(01) p =

p *!(p * / n 0 k *)!
(L II

i )2p =/n0k =

1
p!q!

qC (q0ÉkÉ) /2 (pC{p0Én0k =01É}/2 0 pC{p0Én0k =/1É}/2 )

Å 1

S q

2
/ k

2D!S q

2
0 k

2D!

1 n 0 k *

S p / 1
2

/ n 0 k *

2 D!S p / 1
2

0 n 0 k *

2 D!
1 ∑

(M0k ) /2

q =Å0

(01) q =

q *!(q * / k)!
(L IS

i )2q =/k , [23]

where(p , q) r (p *, q*)

L II
i å JIc( t1) t2 ∑

N

jÅ1

3
4

DII
ij cos{gIGT(sj 0 si )}1 1

q *!(q * / k)
n 0 k *

p *!(p * / n 0 k *)!
, [21]

L IS
i å JSc( t1) t2 ∑

M

lÅ1

1
2

DIS
il cos{gSGT(sl 0 si )}.

where p * Å (p 0 n / k * / 1)/2 and q * Å (q 0 k) /2 (i.e.,
p Å 2p * / n 0 k * 0 1 and q Å 2q * / k) .

We can express Li in terms of the dipolar demagnetizingThe heteronuclear and homonuclear dipolar Hamiltonians
time, tdI å (gIm0MI

0)01 and tdS å (gSm0MS
0)01 [cf. Eq. [78]convert the multispin operators into the observable single-

in Ref. (11)] , as follows:spin operator [cf. Eq. [67] in Ref. (11)] , and Eq. [20] can
be written as

L II
i Å 0

1
2

t2

tdI

cos(pJt1) ,
r p/q

D

Å 20 (N/M/1)J p/1
I J q

S{c( t1)} p/q/1
L IS

i Å 0
1
3
gI

gS

t2

tdS

cos(pJt1) . [24]

1 c( t2) t p/q
2 ∑

N

iÅ1

(01) (p/q01) /2

From the series expansion of the Bessel function

1 ∑
q

kÅ0q

[Ixisin{(n 0 k *)DvIt1 / kDvSt1}

Jn( x) Å ∑
`

kÅ0

(01) k

k!(k / n)! S x

2D
2k/n

, [25]
/ Iyjcos{(n 0 k *)DvIt1 / kDvSt1}]

Eq. [23] can be simplified to1 (n 0 k *)
p *!(p * / n 0 k *)!

rD( t1 , t2)1 S∑
N

jÅ1

3
4

DII
ij cos{gIGT(sj 0 si )} D2p =/n0k =01

Å 20 (N/M/1)JIcos(pJt1)cos(pJt2) ∑
N

iÅ1

∑
k

i n02/k0k =

1 1
q *!(q * / k)! 1 [Ixisin{(n 0 k *)DvIt1 / kDvSt1}

/ Iyicos{(n 0 k *)DvIt1 / kDvSt1}]
1 S∑

M

lÅ1

1
2

DIS
il cos{gSGT(sl 0 si )} D2q =/k

. [22]
1 (L II

i )01(n 0 k *)Jn0k =(2L II
i )Jk(2L IS

i ) . [26]
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Finally, we put the t2 evolution under the chemical shift,
1 Jn0k (gS /gI )S0 t2cos(pJt1)

tdI
D

r obs
D ( t1 , t2)

1 JkS0 2
3
gI

gS

t2cos(pJt1)
tdS

D . [28]Å 20 (N/M/1)JIcos(pJt1)cos(pJt2) ∑
N

iÅ1

∑
k

i n02/k0k =

1 (L II
i )01(n0 k *)Jn0k =(2L II

i )Jk(2L IS
i ) This is the signal that arises without coherence transfer from

the S spins to the I spins due to the J coupling. If the two
spins are not J coupled, substituting J Å 0 in Eq. [28] gives
the signal from the intermolecular heteronuclear coherences
due to the dipolar interactions:1

Ixi{cos(DvIt2)sin[(n0 k *)DvIt1

/ kDvSt1]0 sin(DvIt2)

1 cos[(n0 k *)DvIt1/ kDvSt1]}

/Iyi{cos(DvIt2)cos[(n0 k *)DvIt1

/ kDvSt1]/ sin(DvIt2)

1 sin[(n0 k *)DvIt1/ kDvSt1]}

.

MI/

Å MI
0expH0iFSn 0 k

gS

gI
DDvI / kDvSG t1J

[27]

The signal from the density matrix in Eq. [27] is [cf. Eqs. 1 exp( iDvIt2) 1 ∑
k

i n01/k (10gS/gI )Sn 0 k
gS

gI
D

[78] and [81] in Ref. (11)]

MI/
D ( t1 , t2) 1 StdI

t2
DJn0k (gS/gI )S0 t2

tdI
DJkS0 2

3
gI

gS

t2

tdS
D . [29]

Å Tr{r( t1 , t2)g\(Ix / iIy)}

This result is compared with a simple classical calculationÅ MI
0expH0iFSn 0 k

gS

gI
DDvI / kDvSG t1J in the Appendix; as we discuss in Section III, the classical

calculation is simple only if the J couplings are ignored.
1 ∑

k

i n01/k (10gS /gI )exp( iDvIt2)cos(pJt1)

B. Terms with Coherence Transfer Due to J Coupling

1 cos(pJt2) 1 Sn 0 k
gS

gI
DS tdI

t2cos(pJt1) D The procedure is completely equivalent to the previous
case. The terms with JSJ

p
IJ

q
S are of the type

1
2

Ixis( t1)s( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr{c( t1)} p/q

1 FcosHDvSt1 / S1 0 n
gI

gS
DgSGTsiJ 0 cosHDvSt1 / S1 / n

gI

gS
DgSGTsiJG

[30]
1

p

[cos(DvIt1 / gIGTsj1)cos(DvIt1 / gIGTsj2)rrr]

q

[cos(DvSt1 / gSGTsl1)cos(DvSt1 / gSGTsl2)rrr]
.

When we convert the product of cosines into a sum of cosines, we obtain

cos{DvSt1 / (gS 0 ngI)GTsi } 1

p

cos(DvIt1 / gIGTsj1)rrr

q

cos(DvSt1 / gSGTsl1)rrr

c cos{DvSt1 / (gS 0 ngI)GTsi }cos{mDvIt1 / gIGTsj(m)}cos{kDvSt1 / gSGTsl(k)}

Å 1
4

cos{mDvIt1 / (k / 1)DvSt1 / gIGT(sj(m) 0 nsi ) / gSGT(sl(k) / si )}
/ cos{mDvIt1 / (k 0 1)DvSt1 / gIGT(sj(m) / nsi ) / gSGT(sl(k) 0 si )}
/ cos{mDvIt1 0 (k / 1)DvSt1 / gIGT(sj(m) / nsi ) / gSGT(sl(k) / si )}
/ cos{mDvIt1 0 (k 0 1)DvSt1 / gIGT(sj(m) 0 nsi ) / gSGT(sl(k) 0 si )}

. [31]
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For the first term to pass the gradient filter, we need m Å n 0 (gS /gI)(k / 1). The order of coherence of S spins is
(k / 1). The resulting signal will be cos{(n 0 (k / 1) *)DvIt1 / (k / 1)DvSt1}, where (k / 1) * å (k / 1)(gS /gI)
as before. Then the term multiplied by cos{DvSt1 / (1 0 n(gI /gS))gSGTsi } in Eq. [30] is

1
2

Ixis( t1)s( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr{c( t1)} p/q 1
2 p/q/2 ∑

p

mÅ0p

pC (p0ÉmÉ) /2 ∑
q

kÅ0q

qC (q0ÉkÉ) /2

1

cos{(n 0 (k / 1) *)DvIt1 / (k / 1)DvSt1}dm ,n0 (k/1) =

/ cos{(n / (k 0 1) *)DvIt1 0 (k 0 1)DvSt1}dm ,0n0 (k/1) =

/ cos{(n 0 (k / 1) *)DvIt1 / (k / 1)DvSt1}dm ,0n/ (k/1) =

/ cos{(n / (k 0 1) *)DvIt1 0 (k 0 1)DvSt1}dm ,n0 (k01) =

1 cos{gIGT(sj1 0 si )}rrrcos{gSGT(sl1 0 si )}rrr. [32]

Again, these four terms contribute in the same way, and we The second term in Eq. [30] which is multiplied by
cos{DvSt1 / (1 0 n(gI /gS))gSGTsi } is obtained by chang-can rewrite Eq. [32] as
ing the sign of n , which can be written as

1
2

Ixis( t1)s( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr 1
2

Ixis( t1)s( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr

1 {c( t1)} p/q 1
2 p/q ∑

q

kÅ0q

qC (q0ÉkÉ) /2 pC (p0Én0 (k/1) =É) /2 1 {c( t1)} p/q 1
2 p/q ∑

q

kÅ0q

qC (q0ÉkÉ) /2 pC (p0Én0 (k/1) =É) /2

1 cos{(n 0 (k / 1) *)DvIt1 / (k / 1)DvSt1} 1 cos{(n 0 (k 0 1) *)DvIt1 / (k 0 1)DvSt1}
1 cos{gIGT(sj1 0 si )}rrr 1 cos{gIGT(sj1 0 si )}rrr
1 cos{gSGT(sl1 0 si )}rrr 1 cos{gSGT(sl1 0 si )}rrr

Å 1
2

Ixis( t1)s( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr Å 1
2

Ixis( t1)s( t2)

p

Izj1Izj2rrr

q

Szl1Szl2rrr

1 {c( t1)} p/q 1
2 p/q ∑

q/1

kÅ0q/1

qC (q0Ék01É) /2 pC (p0Én0k =É) /2 1 {c( t1)} p/q 1
2 p/q ∑

q01

kÅ0q01

qC (q0Ék/1É) /2 pC (p0Én0k =É) /2

1 cos{(n 0 k *)DvIt1 / kDvSt1} 1 cos{(n 0 k *)DvIt1 / kDvSt1}

1 cos{gIGT(sj1 0 si )}rrr 1 cos{gIGT(sj1 0 si )}rrr

1 cos{gSGT(sl1 0 si )}rrr. [33] 1 cos{gSGT(sl1 0 si )}rrr. [34]

Then the net signal is

r
(p/q )
J Å J p

IJ
q/1
S 20 (N/M )s( t1)s( t2){c( t1)} p/q 1

2 p/q/1

1
p!q!

1 ∑
k

pC{p0Én0k =É}/2 (qC (q0Ék01É) /2 0 qC (q0Ék/1É) /2 )

1 ∑
ix

∑
j1x

rrr ∑
xl1x

rrr

Ixi

p

Izj1Izj2rrr

q

Szl1Szl2rrrcosHSn 0 k
gS

gI
DDvIt1 / kDvSt1J

0Iyi

p

Izj1Izj2rrr

q

Szl1Szl2rrr sinHSn 0 k
gS

gI
DDvIt1 / kDvSt1J

1 F p

cos{gIGT(sj1 0 si )}rrr

q

cos{gSGT(sl1 0 si )}rrr
G

. [35]
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The coefficient term can be simplified as 1 exp H0iFSn 0 k
gS

gI
DDvI / kDvSG t1J

1
p!q!

pC{p0Én0k =É}/2 (qC (q0Ék01É) /2 0 qC (q0Ék/1É) /2 )
1 kS3

2
gS

gI

tdS

t2cos(pJt1) DJn0k (gS/gI) S0 t2cos(pJt1)
tdI

D
Å k

S q 0 k / 1
2 D!S q / k / 1

2 D! 1 JkS0 2
3
gI

gS

t2cos(pJt1)
tdS

D .

[38]

1 1

S p 0 n / k *

2 D!S p / n 0 k *

2 D!
Note that the signal intensity is proportional to the equilib-
rium magnetization of the S spin, scaled by the ratio of the
magnetogyric ratios of the two nuclei. This arises from the
fact that the source of the signal is the S spins as indicated
in Eq. [12].

(p , q) r (p *, q*)

C. Heteronuclear CRAZED Signalk

q *!(q * / k)!
1

p *!(p * / n 0 k *)!
, [36]

The total signal is the sum of the two contributions with
and without the coherence transfer due to J coupling. Addingwhere p* å (p 0 n / k *) /2 and q* å (q 0 k / 1)/2 (i.e.,
Eqs. [28] and [38], we obtainp Å 2p * / n 0 k * and q Å 2q * / k 0 1). Note the difference

in the definition of (p *, q*) from the previous case (see
MI/

total ( t1 , t2)Eq. [21]) .
Following the same procedure from Eq. [20] to Eq. [27],

ÅMI
0 ∑

k

i n01/k (10gS/gI)expH0iSn0 k
gS

gI
DDvIt1Jwe obtain the expression for the final density matrix

1 exp(0ikDvSt1)exp( iDvIt2)r obs
J

Å 20 (N/M/1)JSsin(pJt1)sin(pJt2) ∑
N

iÅ1

∑
k

i n/k0k =k 1 Jn0k (gS/gI)S0 t2cos(pJt1)
tdI

DJkS0 2
3
gI

gS

t2cos(pJt1)
tdS

D
1 (L IS

i )01Jn0k =(2L II
i )Jk(2L IS

i )
1 Fcos(pJt1)cos(pJt2)Sn0 k

gS

gI
D

1 S tdI

t2cos(pJt1) D0 sin(pJt1)sin(pJt2)

1

Ixi{cos(DvIt2)sin[(n 0 k *)DvIt1

/ kDvSt1] 0 sin(DvIt2)

1 cos[(n 0 k *)DvIt1 / kDvSt1]}

/Iyi{cos(DvIt2)cos[(n 0 k *)DvIt1

/ kDvSt1] / sin(DvIt2)

1 sin[(n 0 k *)DvIt1 / kDvSt1]}

.

1 gS

gI

kS3
2
gS

gI

tdS

t2cos(pJt1) DG . [39]

This explicitly shows that two-dimensional Fourier transfor-[37]
mation will give multiple peaks located at F1 Å (n 0 k(gS /
gI))DvI / kDvS and F2 Å DvI , where (n 0 k(gS /gI))Therefore the signal induced by the coherence transfer from
and k represent the order of coherences of the I and S spinsS to I due to J coupling is
during the t1 period, respectively. The order of coherences
should of course be integers; this is also clear in Eqs. [18]

MI/
J ( t1 , t2) and [32], which were obtained from the condition to pass

the gradient filter. Note that the k-quantum coherence in theÅ Tr{r( t1 , t2)gI\(Ix / iIy)}
S spins is combined with (n 0 k(gS /gI))-quantum coher-
ence in the I spins; that is, k is scaled by the ratio of theÅ gI

gS

MS
0exp( iDvIt2)sin(pJt1)sin (pJt2)

gyromagnetic ratios. The total order of coherence may be
regarded as n quantum as in the homonuclear case for 1:n1 ∑

k

i n/1/k (10gS/gI)

gradient pulses. Note that the signal intensity is proportional
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to the product of the two Bessel functions whose orders It is important to notice that the peaks observed in the
indirectly detected dimension (see Fig. 2) are a triplet whilerepresent the order of coherences of the two spins.

Equation [39] is quite general, and can be applied to both a doublet was observed in the directly detected dimension.
This is clear evidence that the coupling was due to the inter-homonuclear (gI Å gS) and heteronuclear (gI x gS) cases.

However, care must be taken for the homonuclear case. molecular dipolar couplings. If the coupling were due to the
intramolecular J coupling, the 2Q and ZQ spectra in theEquation [39] is valid if the resonance frequencies of the I

and S spins differ by much more than the reciprocal of the indirectly detected dimension would have been singlets
(28) . For an intermolecular 2Q or ZQ transition (involving,dipolar demagnetizing time td (Ç3 Hz for pure water) , and

by much more than the reciprocal of the J coupling. If for example, the proton on molecule 1 and the carbon on
molecule 2), the remaining two spins (proton on moleculeinstead the resonance frequency difference is much smaller

than the reciprocal of the demagnetizing time, the factor of 2/ 2, carbon on molecule 1) can be aa (adding 2J to the
transition frequency), bb (subtracting 2J from the transition3 should be removed in Eq. [39]; if the resonance frequency

difference is much smaller than the J coupling, the spins frequency), or ab /ba ( leaving the transition frequency un-
affected).are magnetically fully equivalent, and J Å 0 should be sub-

stituted into Eq. [39]. Also notice that the 2Q and ZQ signals are different in
the sign of the second term. To verify the effect of J couplingThe most useful type of heteronuclear coherence would

be double-quantum and zero-quantum coherences involving in peak multiplicities we can take the Taylor series expansion
J1(x) É x /2 for the Bessel functions in Eqs. [40] and [41],1Q coherence in the I spin and 1Q coherence in the S spin.

For the 1H and 13C heteronuclear case, we have gS /gI Å 1/ which is valid for early times in t2 . This gives
4. For the n Å {5/4 case, we get the double-quantum peaks
located at (F1 , F2)Å {|(DvI/DvS) , DvI}. The resulting MI/(DvI { DvS , DvI) } A(1 / cos(2pJt1) /2)
signal can be written as

1 cos(pJt2) | B sin(2pJt1)sin(pJt2) , [42]
MI/

2Q( t1 , t2)

where A Å (1/6)(gI /gS)( t2 /tdS) and B Å (1/8)(gS /gI)( t2 /Å iMI
0exp( iDvIt2)exp{|i(DvI / DvS) t1}

tdI) . The upper sign is for the double-quantum case and the
lower sign is the zero-quantum signal. Along the indirectly1 J1S0 t2cos(pJt1)

tdI
DJ1S0 2

3
gI

gS

t2cos(pJt1)
tdS

D detected dimension, the A term gives in-phase peaks whose
intensities are 1:2:1, and the B term produces antiphase peaks
with relative intensities of 2:0:02. The antiphase nature of1 Fcos(pJt1)cos(pJt2)S tdI

t2cos(pJt1) D the B term makes the two outer peaks asymmetric, which
originates from the coherence transfer due to J coupling. For0 sin(pJt1)sin(pJt2)
neat 13CHCl3 , A :BÅ 1:3. Therefore the relative intensities of
a triplet peak along the indirectly detected dimension will
be 7:2:05 for the double-quantum signal while that of the1 gS

gI
S3

2
gS

gI

tdS

t2cos(pJt1) DG . [40]
zero-quantum signal will be 05:2:7. This explains why the
peaks in the experimental spectra in Fig. 2 run in the opposite

The zero-quantum peaks obtained if n Å {3/4 are located direction for DQ and ZQ sequences.
at (F1 , F2) Å {|(DvI 0 DvS) , DvI}, and the signal is Figure 3 shows numerical simulations based on Eqs. [40]

and [41]. They agree fairly well with Eq. [42] obtained by
MI/

Z Q( t1 , t2) considering only the first-order term in the series expansion.
The outer peaks appear larger than the middle peak, which isÅ iMI

0exp( iDvIt2)exp{|i(DvI 0 DvS) t1}
contradictory to the experimental result (Fig. 2) . However, it
is very difficult to predict the relative intensities quantita-1 J1S0 t2cos(pJt1)

tdI
DJ1S0 2

3
gI

gS

t2cos(pJt1)
tdS

D tively since we ignored all the other effects (e.g., relaxation,
radiation damping, diffusion) except the dipolar and J cou-
pling which can affect peak intensities.1 Fcos(pJt1)cos(pJt2)S tdI

t2cos(pJt1) D In principle, we would expect higher-order intermolecular
cross peaks. For the case of n Å 3/4 and k Å 5, multiple-/ sin(pJt1)sin(pJt2)
quantum coherence evolving at 2DvI 0 5DvS during the t1

period will pass the gradient filter too. However, these peaks
are not observed experimentally because their magnetization1 gS

gI
S3

2
gS

gI

tdS

t2cos(pJt1) DG . [41]
is modulated by the product of higher-order Bessel functions
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FIG. 2. Two-dimensional spectra (256 1 2K data points each) with detection of 1H magnetization on a Varian 600-MHz Inova NMR spectrometer
at 298 K. Carbon-13-enriched chloroform (99%) was purchased from Isotec Inc. and used without further purification. Neat 13CHCl3 solution was used
for our experiments. The sample was contained in a 5-mm-o.d. NMR tube and sealed. We used about 6.7 1 1003 M ferric acetylacetate as a relaxation
agent to reduce the T1 of carbon from 22.0 to 9.5 s, thus shortening the experiments. Gradient strength G is 18 G/cm, and T is 4 ms. Proton and carbon
resonance offsets are 0500 and 01000 Hz, respectively, and the J coupling constant is 210 Hz. The pulse repetition delay is 60 s. (a) Ratio n is
03/4. Zero-quantum triplet cross peaks appear at F2 Å 0500 Hz, F1 Å 500 Hz (DvH 0 DvC) . (b) Ratio n is 05/4. Double-quantum triplet cross peaks
appear at F2 Å 0500 Hz, F1 Å 01500 Hz (DvH / DvC) . The relative intensities of two outer peaks in a triplet (same position in F2) are different
between DQ and ZQ cases. A simple phase cycling({) on the first carbon 907 pulse and receiver phase eliminates the residual proton SQ coherences
(since the gradient ratio is closer to 01); however, we also lose some information about the J coupling effect on DQ and ZQ coherences (see
Ref. (17)) .

( i.e., J2 1 J5) , whose intensities are much lower at the terms Ia or Sb , where a and b can be x , y , or z) must be
considered. For the heteronuclear CRAZED sequence, all ofshort times where relaxation processes have not yet begun
the zero-quantum terms except for Iz and Sz (which give theto dominate. This effect is exacerbated in our case since tdS

demagnetizing field) and all of the two-quantum terms canis 64 times longer than tdI , meaning that the maximum of
be ignored in both t1 and t2 , since they do not lead to observ-higher-order Bessel function occurs at times much too long
able signal. Thus only 10 independent equations (Ix , Iy , Iz ,to escape relaxation.
IxSz , IySz , Sx , Sy , Sz , SxIz , and SyIz) would have to be solved,
but this is still substantially more complex than the uncou-III. DISCUSSION AND CONCLUSIONS
pled spin case. Such an approach is discussed formally in

The quantum calculation is involved because many differ- Ref. (15) , although no explicit signal calculations are done
ence coherence transfer pathways, both intramolecular and there; our paper is the first calculation which produces an
intermolecular, must be considered. However, the calcula- analytical result in the presence of couplings.
tion shows explicitly that the quantum mechanical picture, The classical and quantum results will give the same an-
with its intuitive power, can still be used to visualize the swer; the boundary between solid-like behavior, where
effects of intermolecular dipolar couplings even when the quantum and classical pictures are expected to deviate, and
spectrum is structured by internal couplings. liquid-like behavior has been treated in detail elsewhere

It would be possible to also extend the nonlinear Bloch (30) . The classical picture may have some computational
equations into nonlinear master equations which explicitly advantages, as it does in the absence of J couplings, because
handle the spin operators within each molecule, and then use radiation damping and diffusion can be included. However,
the mean field approximation to couple molecules. However, the most important use of the quantum picture, as in previous
with two spins in each molecule, this means that in general work, is to give an intuitive picture and to predict the effects

of new pulse sequences, since the properties of multiple-15 independent equations (all the products IaSb and all the
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FIG. 3. Simulations of two-dimensional spectra based on (a) Eq. [40] (DQ coherence) and (b) Eq. [41] (ZQ coherence) with same resonance
offsets and J coupling constant of the experiments in Fig. 2. The outer peaks in both simulations are larger than the middle peak (see text) .

quantum coherences are well understood. Thus, inclusion of After the second 907 pulses followed by the chemical shift
evolution during t1 and the first gradient pulse, the longitudi-intramolecular couplings into the quantum picture gives a

strong foundation for devising the next generation of experi- nal and transverse components of the magnetization are
ments.

Mz Å 0 ∑
j

{M j
0cos(Dvjt1 / gjGTz)}

APPENDIX M/ Å iMy Å i ∑
j

{M j
0sin(Dvjt1 / gjGTz)}, [A2]

Classical Calculation Based on Modified Bloch Equations
for a Multicomponent System where Dvj and gj are the resonance frequency in the rotating

frame and the gyromagnetic ratio of the j spin, respectively.For comparison, we present here the classical calculation
For simplicity in notation, we transform t1 / T into t1 andbased on nonlinear Bloch equations for the case where there
t1 / nT into t2 after the gradient pulses. After the secondare no scalar couplings. At equilibrium, the magnitude of
gradient pulse and precession during t2 , we can have thethe magnetization which is all on the z axis is given by
following equation if the resonance frequency of each spin
differs by much more than the reciprocal of the dipolar de-M0 Å ∑

j

M j
0zP . [A1]

magnetizing time,

Mz Å 0 ∑
j

{M
j
0cos(Dvjt1 / gjGTz)}

M/ Å i ∑
j

M
j
0sin(Dvjt1 / gjGTz)exp i

Dvjt2 / gjnGTz 0 t01
dj t2cos(Dvjt1 / gjGTz)

0 ∑
kxj
F2

3
gj

gk

t01
dk t2cos(Dvkt1 / gkGTz)G , [A3]

where tdj is the dipolar demagnetizing time of the j spin. Using the identity

exp( iz cos u) Å ∑
`

mÅ0`

imJm(z)exp( imu) , [A4]
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the observable single-quantum magnetization becomes

M/ Å i ∑
j

M j
0

1
2i

{exp i(Dvjt1 / gjGTz) 0 exp(0i(Dvjt1 / gjGTz))}exp i(Dvjt2 / gjnGTz)

1 ∑
`

mjÅ0`

im j JmjS0 t2

tdj
Dexp i(mjDvjt1 / gjmjGTz)

1 ∏
kxj

H ∑
`

mkÅ0`

imk JmkS0 2
3
gj

gk

t2

tdk
Dexp i(mkDvkt1 / gkmkGTz)J

. [A5]

To find the effect of spatial modulation, we collect all the
1 Sn 0 ∑

kxj

mkSgk

gj
DD Stdj

t2
DJ (n0(kmk (gk/gj) )S0 t2

tdj
Dposition-dependent terms as

{exp( igjGTz) 0 exp(0igjGTz)} 1 ∏
kxj

exp(0imkDvkt1)JmkS0 2
3
gj

gk

t2

tdk
D . [A7]

1 exp( igjnGTz) ∑
mj

exp( igjmjGTz)

In the case of a two-spin, I and S system, this equation
1 ∏

kxj

[∑
mk

exp( igkmkGTz)] becomes

MI/

Å ∑
mj

∑
mk

Fexp iHSn / 1 / mj / ∑
kxj

mkSgk

gj
DDgjGTzJ

Å i n01/k (10gS/gI)MI
0expH0iSn 0 k

gS

gI
DDvIt1J

0 exp iHSn 0 1 / mj / ∑
kxj

mkSgk

gj
DDgjGTzJG . 1 exp(0ikDvSt1)exp( iDvIt2)

1 Sn 0 k
gS

gI
DStdI

t2
DJn0k (gS/gI)S0 t2

tdI
D[A6]

In order for a magnetization to be nonzero after spatial aver- 1 JkS0 2
3
gI

gS

t2

tdS
D , [A8]

aging, one of the expressions in Eq. [47] must be constant
with respect to position and thus must have a coefficient of

which is exactly the same as the result from the densityzero for the z direction. Therefore, we require the following
matrix calculation, Eq. [29].condition for there to be a signal:
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